36,809 research outputs found

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Improved quark mass density- dependent model with quark-sigma meson and quark-omega meson couplings

    Full text link
    An improved quark mass density- dependent model with the non-linear scalar sigma field and the ω\omega-meson field is presented. We show that the present model can describe saturation properties, the equation of state, the compressibility and the effective nuclear mass of nuclear matter under mean field approximation successfully. The comparison of the present model and the quark-meson coupling model is addressed.Comment: 15 pages, 6 figure

    Does the 2D Hubbard Model Really Show d-Wave Superconductivity?

    Full text link
    Some issues concerning the question if the two-dimensional Hubbard model really show d-wave superconductivity are briefly discussed.Comment: Revtex, no figure

    Soliton solutions of the improved quark mass density-dependent model at finite temperature

    Get PDF
    The improved quark mass density-dependent model (IQMDD) based on soliton bag model is studied at finite temperature. Appling the finite temperature field theory, the effective potential of the IQMDD model and the bag constant B(T)B(T) have been calculated at different temperatures. It is shown that there is a critical temperature TC110MeVT_{C}\simeq 110 \mathrm{MeV}. We also calculate the soliton solutions of the IQMDD model at finite tmperature. It turns out that when T<TCT<T_{C}, there is a bag constant B(T)B(T) and the soliton solutions are stable. However, when T>TCT>T_{C} the bag constant B(T)=0B(T)=0 and there is no soliton solution, therefore, the confinement of quarks are removed quickly.Comment: 10 pages, 9 figures; Version to appear in Physical Review

    Thermodynamics of spin-1/2 tetrameric Heisenberg antiferromagnetic chain

    Full text link
    The thermodynamic properties of a spin S=1/2 tetrameric Heisenberg antiferromagnetic chain with alternating interactions AF1-AF2-AF1-F (AF and F denote the antiferromagnetic and ferromagnetic couplings, respectively) are studied by means of the transfer-matrix renormalization group method and Jordan-Wigner transformation. It is found that in the absence of magnetic field, the thermodynamic behaviors are closely related to the gapped low-lying excitations, and a novel structure with three peaks in the temperature dependence of specific heat is unveiled. In a magnetic field, a phase diagram in the temperature-field plane for the couplings satisfying JAF1=JAF2=JF is obtained, in which various phases are identified. The temperature dependence of thermodynamic quantities including the magnetization, susceptibility and specific heat are studied to characterize the corresponding phases. It is disclosed that the magnetization has a crossover behavior at low temperature in the Luttinger liquid phase, which is shown falling into the same class as that in the S=1 Haldane chain. In the plateau regime, the thermodynamic behaviors alter at a certain field, which results from the crossing of two excitation spectra. By means of the fermion mapping, it is uncovered that the system has four spectra from fermion and hole excitations that are responsible for the observed thermodynamic behaviors.Comment: 10 pages, 10 figures, accepted by Phys. Rev.

    A Structured Framework and Resources to Use to Get Your Medical Education Work Published.

    Get PDF
    IntroductionMedical educators often have great ideas for medical education scholarship but have difficulty converting their educational abstract or project into a published manuscript.MethodsDuring this workshop, participants addressed common challenges in developing an educational manuscript. In small-group case scenarios, participants discovered the importance of the "So what?" in making the case for their project. Incorporating conceptual frameworks, participants chose appropriate outcome metrics, discussed how to frame the discussion section, and ensured appropriate journal fit. After each small-group exercise, large-group discussions allowed the small groups to report back so that facilitators could highlight and reinforce key learning points. At the conclusion of the workshop, participants left with a checklist for creating an educational manuscript and an additional resources document to assist them in avoiding common pitfalls when turning their educational abstract/project into a publishable manuscript.ResultsThis workshop was presented in 2016 and 2017. Presenter evaluations were completed by 33 participants; 11 completed conference evaluations. The mean overall rating on presenter evaluations was 4.55 out of 5, while the conference evaluations mean was 3.73 out of 4. Comments provided on both evaluation tools highlighted the perceived effectiveness of the delivery and content. More than 50% of respondents stated that they planned to incorporate the use of conceptual frameworks in future work.DiscussionThis workshop helped participants address common challenges by providing opportunities for hands-on practice as well as tips and resources for use when submitting a medical education manuscript for publication

    Nuclear matter and neutron matter for improved quark mass density- dependent model with ρ\rho mesons

    Full text link
    A new improved quark mass density-dependent model including u, d quarks, σ\sigma mesons, ω\omega mesons and ρ\rho mesons is presented. Employing this model, the properties of nuclear matter, neutron matter and neutron star are studied. We find that it can describe above properties successfully. The results given by the new improved quark mass density- dependent model and by the quark meson coupling model are compared.Comment: 18 pages, 7 figure

    Mechanical Response of He- Implanted Amorphous SiOC/ Crystalline Fe Nanolaminates

    Get PDF
    This study investigates the microstructural evolution and mechanical response of sputter-deposited amorphous silicon oxycarbide (SiOC)/crystalline Fe nanolaminates, a single layer SiOC film, and a single layer Fe film subjected to ion implantation at room temperature to obtain a maximum He concentration of 5 at. %. X-ray diffraction and transmission electron microscopy indicated no evidence of implantation-induced phase transformation or layer breakdown in the nanolaminates. Implantation resulted in the formation of He bubbles and an increase in the average size of the Fe grains in the individual Fe layers of the nanolaminates and the single layer Fe film, but the bubble density and grain size were found to be smaller in the former. By reducing the thicknesses of individual layers in the nanolaminates, bubble density and grain size were further decreased. No He bubbles were observed in the SiOC layers of the nanolaminates and the single layer SiOC film. Nanoindentation and scanning probe microscopy revealed an increase in the hardness of both single layer SiOC and Fe films after implantation. For the nanolaminates, changes in hardness were found to depend on the thicknesses of the individual layers, where reducing the layer thickness to 14 nm resulted in mitigation of implantation-induced hardening
    corecore